Exercise 7.2.7

The differential equation

$$
P(x, y) d x+Q(x, y) d y=0
$$

is exact. Show that its solution is of the form

$$
\varphi(x, y)=\int_{x_{0}}^{x} P(x, y) d x+\int_{y_{0}}^{y} Q\left(x_{0}, y\right) d y=\text { constant }
$$

Solution

The ODE is exact, so there exists a potential function $\varphi=\varphi(x, y)$ that satisfies

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=P(x, y) \tag{1}\\
& \frac{\partial \varphi}{\partial y}=Q(x, y) \tag{2}
\end{align*}
$$

With these two relationships, the ODE can be written as

$$
\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y=0
$$

The left side is how the differential of φ is defined.

$$
d \varphi=0
$$

Integrate both sides.

$$
\begin{equation*}
\varphi(x, y)=C \tag{3}
\end{equation*}
$$

The solution to the ODE is found then by solving equations (1) and (2) for φ. Start by integrating both sides of equation (1) partially with respect to x.

$$
\varphi(x, y)=\int^{x} P(r, y) d r+f(y)
$$

Here $f(y)$ is an arbitrary function of y. Because of it, the lower limit of integration is arbitrary and can be set to any constant, say x_{0}.

$$
\varphi(x, y)=\int_{x_{0}}^{x} P(r, y) d r+f(y)
$$

Differentiate both sides with respect to y.

$$
\begin{aligned}
\frac{\partial \varphi}{\partial y} & =\frac{\partial}{\partial y} \int_{x_{0}}^{x} P(r, y) d r+f^{\prime}(y) \\
& =\left.\int_{x_{0}}^{x} \frac{\partial P}{\partial y}\right|_{x=r} d r+f^{\prime}(y) \\
& =\left.\int_{x_{0}}^{x}\left[\frac{\partial}{\partial y}\left(\frac{\partial \varphi}{\partial x}\right)\right]\right|_{x=r} d r+f^{\prime}(y) \\
& =\left.\int_{x_{0}}^{x}\left[\frac{\partial}{\partial x}\left(\frac{\partial \varphi}{\partial y}\right)\right]\right|_{x=r} d r+f^{\prime}(y) \\
& =\left.\int_{x_{0}}^{x} \frac{\partial Q}{\partial x}\right|_{x=r} d r+f^{\prime}(y) \\
& =Q(x, y)-Q\left(x_{0}, y\right)+f^{\prime}(y)
\end{aligned}
$$

Comparing this formula for $\partial \varphi / \partial y$ to equation (2), we see that

$$
-Q\left(x_{0}, y\right)+f^{\prime}(y)=0
$$

The arbitrary function f can be determined.

$$
f^{\prime}(y)=Q\left(x_{0}, y\right)
$$

Integrate both sides with respect to y.

$$
f(y)=\int^{y} Q\left(x_{0}, s\right) d s+C_{1}
$$

Because C_{1} is arbitrary, the lower limit of integration is arbitrary as well. Set it to y_{0}.

$$
f(y)=\int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s+C_{1}
$$

φ is then

$$
\varphi(x, y)=\int_{x_{0}}^{x} P(r, y) d r+\int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s+C_{1} .
$$

Therefore, by equation (3), the solution to the exact ODE is

$$
\int_{x_{0}}^{x} P(r, y) d r+\int_{y_{0}}^{y} Q\left(x_{0}, s\right) d s=\text { constant. }
$$

